[image: image1.wmf] OpenCores
 TITLE * MERGEFORMAT
4/23/2004

[image: image1.wmf]
Wishbone Z80 Core
Specification

Author: Brewster Porcella

bporcella@sbcglobal.net
Rev. 1.0

April 22, 2004
This page has been intentionally left blank.

Revision History

	Rev.
	Date
	Author
	Description

	1.1
	4/23/2004
	bjp
	First Cut

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Contents

1Introduction

Architecture
2
Operation
5
Registers
6
List of Registers
6
Register 1 – Description
6
Clocks
7
IO Ports
8
Appendix A
9
Appendix B
10
Index
11

Introduction

The impetus for the construction of this core has been work the author is doing with group on SourceForge (http://socbuilder.sourceforge.net/). As advertised on the referenced web page: “SoC builder is a tool that combines proven IP cores automatically into a complete RTL description.”

Work on the SoC builder is still in the definition phase as this is being written (4/23/2004). However, it appears that a very general tool is being planned – one that could in theory aid in connecting any set of cores together.

While the author appreciates the potential value of a general tool, his interest is somewhat more mundane. He would like to be able to connect “classes” of cores together easily. (Just as you would not use a lawnmower engine to power a locomotive, you would not use a PIK processor to drive a SONET interface.) If cores are not designed from the beginning to work together, simply hooking them together will probably not be a useful thing to do.

The good news is that once the general tool becomes available, it should be easy to configure it for specific “classes” of cores. The bad news (for the Open Cores community) is that while there are a large number of free cores available, They are not easily organized into classes that make good sense to build together. This is especially true if we require classes of compatible cores to be implemented in the same language.

The purpose of the Wishbone Z80 development is to provide a “low-end engine” (written in verilog) that could logically interface with many of the low-end verilog peripherals available to the community, while providing sufficient “horsepower” to be used effectively with the more interesting “high end” peripherals.

The deign is conceived to operate efficiently with internal static RAM. Thus, a two stage pipeline is implemented to allow instruction execution at the access rate of a 32 kbyte RAM. (This could be well over 300 Mhz. depending on implementation technology.)

Architecture

A block diagram of the core is presented in figure 2.1 below. Blocks of particular interest are shown along with arrows giving the directions of major data transfers. The figure is divided into three “columns” which delimit the verilog files in which included blocks are defined. General descriptions of each block follow in this document.

[image: image2.wmf]
[image: image3.png]
Main Memory (sram.v)

The main memory is implemented as a 32k words by 8 bit SRAM. Note that the Z80 processor supports 64k bytes of SRAM. We have opted to implement only ½ of this total simply to emphasize that external memory is easily made available. It is also easy to modify parameters to implement all available 64k on board. There is more discussion of this issue in Appendix A

ram

The code for the on board ram is generic (as described in Open Cores Design Guidelines) to minimize synthesis problems in various target implementation technologies.

Memory Access State Machine (memstate.v)

The “Memory Access State Machine” was originally conceived as two separate machines:

1) An Instruction “Pre-Decoder”

2) A Memory Operation Execution Engine

As experience was gained in decoding the instruction set of the Z80, It was decided that the interactions between these machines was so complex that a single machine was probably the best documentation choice. Thus there is a single state machine (dec_state) which specifies the state of instruction stream – and so determine how incoming instruction data should be interpreted.

wb_adr_o

This is the 16 bit address register that supplies the wishbone address.

nn

This is a 16 bit register that is used for data transfer between main memory and all processor registers. I/O data is also buffered through this register. While actual transfers are 8 bits, the Z80 instruction set supports 16 bit operands. In these cases, It has proven efficient to transfer 16 bits internally while using two cycles for external transfers. Accordingly, this register has 16 bit load operatons, 8 bit load operatons and byte exchange operations. External transfers (with main memory and I/O) are from the most significant byte.

ir1

This is the first intruction register in the instruction pipeline. It provides the primary data for the memory access state machine.

ir1dd

The Z80 instruction set has two “classes” of instructions that are constructed from standard instructions “prefixed” by special bytes. It makes logical sense to treat these “prefix” bytes as instruction modifiers. This register is activated when one of these prefixed instructions is being executed. The numeric value of this prefix is (surprisingly enough) 0xdd.

ir1fd

This register is activated while decoding the 0xfd “prefixed” instructions

adr_alu

The address alu is a 16 bit adder-subtractor used to compute addresses, and modify both the program counter and the stack pointer.

sp

The stack pointer. (see Z80 Users Manual for more information).

pc

The program counter. . (see Z80 Users Manual for more information).

ir1 decoder

This decoder is a complex set of logic distributed throughout the file documentation. To understand this design, special note should be taken of the term “next_state”. Note that this term is assigned in a combinational always block. Note that “next_state” is fundamentally a concatenation of: next_dec_state, next_mem_state and next_pipe_state. These wires specify the next values of the decode state machine, the memory interface registers, and the instruction pipeline respectively. If a detailed understanding of this operation is desired – read the code as well as the extensive comments.

state machine

This block represents two state machines. The memory access state machine and the decode state state machine. Both or these are reasonably simple in theory. The complexity is in the decoder described above.

Register Modification Logic (inst_exec)

gp registers

These registers are the program registers manipulated by the instruction stream. Their operation is described extensively in the Z80 Users Manual .

shadow registers

These registers hold the values of the normal program registers during selected interrupt routines. See Z80 Users Manual for more detail.

alu’s

Logical and arithmetic operations are described using multiple shared logic blocks or “arithmetic and logic units”. The selection of these units is more of an art than a science. The trick is to keep total logic reasonably small – while at the same time keeping the worst case logic propagation path short. Issues that may arise in the process of synthesis and timing closure could indicate changes to otherwise valid logic in this area.

ir2

This register represents the second register of the two level instruction pipe. Note that when long strings of single byte instructions are being executed (the typical case), Operations are being performed on both registers of the pipe concurrently

ir2 decode

The Dccode logic that configures the operations of the various ALU’s (and selects which outputs are in fact valid).

[image: image4.png]
Operation

Operation of the core is generally defined in the Z80 Users Manual available in the same directory in which this document resides. There are however, a few minor differences that need to be described:

1) Pin Timing is of course not relevant. All external pin timings conform to Wishbone Specfications.

2) Non-Maskable interrupts are not supported.

3) Only Interrupt Mode 2 (IM2) is supported.

4) While all other “documented” behavior is implemented, it appears that many Z80 users expect some “undocumented” operations. As of this revision, which undocumented operations are supported is not fully determined.

Points 2 and 3 above imply that instructions IM0, IM1 and IM2 are all treated as NOP’s. In addition, there is only a single interrupt enable flag (which is always activated on RETI). This may have implications with regard to some of the more obscure flag manipulations. Specifics are yet to be determined.

A number of the differences listed in this section are also listed in Appendix A as Issues. If potential users of this core would like changes on any of these issues, their requests will of course be considered carefully.

Registers

The operation of all User Accessible Registers is described in the Z80 Users Manual (z80cpu_up.pdf) which resides in the same directory as this document.

Clocks

This core requires a single clock only.

	Name
	Source
	Rates (MHz)
	Remarks
	Description

	
	
	Max
	Min
	Resolution
	
	

	wb_clk_i
	
	300 ?
	-
	-
	Rate Depends on implementation technology
	System clock.

Table 3: List of clocks

IO Ports

This section specifies the core IO ports.

	Port
	Width
	Direction
	Description

	wb_ack_i
	1
	Input
	Block’s WISHBONE Acknowledge Input

	wb_clk_i
	1
	Input
	Block’s WISHBONE Clock Input

	wb_dat_i[7:0]
	8
	Input
	Block’s WISHBONE Data Input

	bist_req_i
	1
	Input
	Built In Self Test Request Test

	int_req_i
	1
	Input
	Interrupt Request

	wb_dat_o[7:0]
	8
	Output
	Block’s WISHBONE Data Output

	wb_stb_o
	1
	Output
	Block’s WISHBONE Strobe Output

	wb_we_o
	1
	Output
	Block’s WISHBONE Write Enable Output

	wb_adr_o[15:0]
	16
	Output
	Block’s WISHBONE Address Output

	wb_tga_o[1:0]
	2
	Output
	Block’s WISHBONE Tag output

	bist_ack_o,
	1
	Output
	Built In Self Test Complete

	bist_err_o
	1
	Output
	Built In Self Test Error in Test

Table 4: List of IO ports

1 WISHBONE DATASHEET

	Table A-4. WISHBONE DATASHEET for the 16 x 8-bit SLAVE memory.

	Description
	Specification

	General description:
	64kx8-bit memory / 64kx8-bit I/O master.

	Supported cycles:
	MASTER, READ/WRITE

	Data port, size:
	8-bit

	Data port, granularity:
	8-bit

	Data port, maximum operand size:
	8-bit

	
	

	Data transfer ordering:
	little endian

	Data transfer sequencing:
	Undefined

	Clock frequency constraints:
	NONE (determined by memory primitive)

	Supported signal list and cross reference

to equivalent WISHBONE signals:

	Signal Name

WISHBONE Equiv.

wb_tga_o[1:0]

TGA_O()

wb_ack_I

ACK_I

wb_adr_o[15:0]

ADR_O()

wb_clk_I

CLK_I

wb_dat_i[7:0]

DAT_I()

wb_dat_o[7:0]

DAT_O()

wb_stb_o

STB_O

wb_we_o

WE_O

	tga_o usage
	tga_o == 2’b00 Memory Access Cycle

tga_o == 2’b01 I/O Access Cycle

tga_o == 2’b10 Interrupt Ack cycle

tga_o == 2’b11 Not Defined

	Special requirements:

	Integrated SRAM responds to Memory Access Cycles (If within address range) with “classic” single cycle access.

Issues

Which are compatable cores?

How are programs loaded into SRAM?

Should an internal cache – external PROM be an option?

Undocumented Instructions!!!!!

Non Maskable Interrupt

Name

This section may be added to outline different specifications.

This section contains an alphabetical list of helpful document entries with their corresponding page numbers.

� EMBED PBrush ���

ram

adr

nn

ir1

ir1dd

ir1fd

decode ir1

mem state machine

sp

pc

gp registers

ar�
fr�
�
br�
cr�
�
dr�
er�
�
hr�
lr�
�
ixr�
�
iyr�
�

alu’s

alu_8�
�
alu_16�
�
sh_alu�
�
bit_alu�
�

ap�
fp�
�
bp�
cp�
�
dp�
ep�
�
hp�
lp�
�
shadow or

“prime” registers

adr_o

dat_i; dat_o

adr alu

ir2

decode ir2

cyc_o

stb_o

ack_i

memstate.v

inst_exec.v

sram.v

fig 2.1

www.opencores.org
Rev 0.8 Preliminary
ii

[image: image5.wmf]_1054035473

